FIND: An Unsupervised Implicit 3D Model of Articulated Human Feet Oliver Boyne, James Charles, Roberto Cipolla

UNIVERSITYOF CAMBRIDGE

Motivation

University of Cambridge

- Modelling feet is useful for shoe fitting and orthotics \rightarrow
- Accurate generative models of bodies [1], hands [2] and faces [3] have been well developed
- Foot models are a relatively unexplored category typical shape reconstruction \rightarrow uses point clouds [4] or low-resolution PCA models [5]
- Producing foot models is challenging due to limited available data \rightarrow

Method - Learning parts

Figure 6: Pipeline for predicting per-pixel parts from an input image

Figure 1: (a) Point cloud reconstruction and (b) a PCA model are unable to capture the geometry and texture of (c) a high resolution foot scan

Contributions

T-Pose

Toe Abduction Eversion

Figure 3: Foot3D scans with pose descriptions

FIND (Foot Implicit Neural Deformation) model which generates **explicit**, textured feet with pose, shape and texture

- StyleGAN [7] generates synthetic foot images \rightarrow
- Encode [6] foot images to StyleGAN style codes \rightarrow
- k-means clustering on StyleGAN feature maps produces 'part' segmentations \rightarrow
- Train MLP classifier to predict these parts \rightarrow
- Fully differentiable image-to-parts pipeline (Figure 6) \rightarrow
- At train time, use pipeline to learn parts directly on template mesh of FIND \rightarrow
- For inference on 2D images, use cross entropy between image-to-parts pipeline and projected 3D FIND parts

Experimental Results

3D evaluation: model evaluated by fitting to Foot3D validation scans, with 3D chamfer loss

Model	Trained on	Chamfer, $\mu m \downarrow$	Keypoint, mm \downarrow	IoU \uparrow
SUPR [8]	4D foot scans	48.0	11.2	0.756
PCA [9]	Foot3D	11.2	15.7	0.892
FIND	Foot3D	7.3	5.9	0.931

- Unsupervised shape/pose disentanglement
- → Unsupervised part-based learning

Toe flexion

Foot3D dataset of high resolution, textured foot scans in a variety of poses \rightarrow

Method - FIND Model

Figure 4: FIND model overview

- Given latent codes z_s (shape), z_p (pose), z_t (texture) \rightarrow
- Sample points *x* on the surface of template mesh \rightarrow
- Feed positional encoding $\gamma(x)$ through MLP F to predict colour c and

Figure 7: Qualitative results of 3D fitting to validation scans

2D evaluation: model fitted to synthetic renders of Foot3D scans, using (i) \rightarrow silhouette loss only, (ii) silhouette + VGG [10] perceptual loss, and (iii) silhouette + cross-entropy loss using our learned foot parts

displacement Δx

$F(\gamma(x), z_s, z_p, z_t) \rightarrow (\Delta x, c)$

- Unsupervised pose representation learning \rightarrow
 - Constraint: feet of same identity have same z_s
 - Contrastive loss: similar poses have similar z_p ; different poses have different z_p

Figure 5: Multi-resolution capability of the model. For speed or memory critical applications, a low resolution template mesh can be used.

Optimisation loss	Chamfer, $\mu m \downarrow$	Keypoint, mm \downarrow	Chamfer, $\mu m \downarrow$	Keypoint, mm \downarrow
Sil	81.8	14.4	16.8	7.7
Sil + VGG [10]	78.7	13.1	15.9	7.3
Sil + CE Loss	45.8	10.3	15.7	6.4

References

[1] Loper et al. SMPL: A Skinned Multi-Person Linear Model. ACM TOG 2015 [2] Li et al. Learning a model of facial shape and expression from 4D scans. ACM TOG 2017 [3] Romero et al. Embodied hands: Modeling and capturing hands and bodies together. ACM TOG 2017 [4] https://www.xesto.io [5] https://www.snapfeet.io [6] Alaluf et al., ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement. ICCV 2021 [7] Richardson et al., Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation. CVPR 2021 [8] Osman et al. SUPR: A Sparse Unified Part-Based Human Representation. ECCV 2022 [9] Yang et al. FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation. CVPR 2018 [10] Simonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR 2015

> ollieboyne.github.io/FIND Dataset
>
> Code
>
> Web demo

> > Email: ob312@cam.ac.uk

